The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage

30Citations
Citations of this article
204Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Exercise-induced muscle damage (EIMD) results in transient muscle inflammation, strength loss, muscle soreness and may cause subsequent exercise avoidance. Omega-3 (n-3) supplementation may minimise EIMD via its anti-inflammatory properties, however, its efficacy remains unclear. Methods: Healthy males (n = 14, 25.07 ± 4.05 years) were randomised to 3 g/day n-3 supplementation (N-3, n = 7) or placebo (PLA, n = 7). Following 4 weeks supplementation, a downhill running protocol (60 min, 65% V̇O2max, − 10% gradient) was performed. Creatine kinase (CK), interleukin (IL)-6 and tumour necrosis factor (TNF)-α, perceived muscle soreness, maximal voluntary isometric contraction (MVIC) and peak power were quantified pre, post, and 24, 48 and 72 h post-EIMD. Results: Muscle soreness was significantly lower in N-3 vs PLA group at 24 h post-EIMD (p = 0.034). IL-6 was increased in PLA (p = 0.009) but not in N-3 (p = 0.434) following EIMD, however, no significant differences were noted between groups. Peak power was significantly suppressed in PLA relative to pre-EIMD but not in N-3 group at 24 h post-EIMD. However, no significant difference in peak power output was observed between groups. MVIC, CK and TNF-α were altered by EIMD but did not differ between groups. Conclusion: N-3 supplementation for 4 weeks may successfully attenuate minor aspects of EIMD. Whilst not improving performance, these findings may have relevance to soreness-associated exercise avoidance.

Cite

CITATION STYLE

APA

Kyriakidou, Y., Wood, C., Ferrier, C., Dolci, A., & Elliott, B. (2021). The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. Journal of the International Society of Sports Nutrition, 18(1). https://doi.org/10.1186/s12970-020-00405-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free