This study reports the effect of Zn contents on surface morphology, porosity, microstructure and mechanical properties of laser additive manufacturing (LAM) porous ZK61 alloys. The surface morphology and porosity of the LAMed porous ZK61 alloys depend on the laser energy input. With increasing Zn contents, the surface quality of porous Mg-Zn-Zr alloys became worse, the grains are obviously refined and the precipitated phases experienced successive transitions: MgZn → MgZn + Mg7Zn3 → Mg7Zn3. The microhardness was improved significantly and ranged from 57.67 HV to 109.36 HV, which was ascribed to the fine grain strengthening, solid solution strengthening and precipitation strengthening. The LAMed porous Mg-15 wt.% Zn-0.3 wt.% Zr alloy exhibits the highest ultimate compressive strength (73.07 MPa) and elastic modulus (1.785 GPa).
CITATION STYLE
Zhang, M., Chen, C., Liu, C., & Wang, S. (2018). Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing. Metals, 8(8). https://doi.org/10.3390/met8080635
Mendeley helps you to discover research relevant for your work.