Cohesin-dependence of neuronal gene expression relates to chromatin loop length

85Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the Immediate early gene Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterised by long-range chromatin contacts. Cohesin49 dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.

Cite

CITATION STYLE

APA

Calderon, L., Weiss, F. D., Beagan, J. A., Oliveira, M. S., Georgieva, R., Wang, Y. F., … Merkenschlager, M. (2022). Cohesin-dependence of neuronal gene expression relates to chromatin loop length. ELife, 11. https://doi.org/10.7554/eLife.76539

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free