Three carbonaceous porous materials (biochar and activated carbon) were developed from the Tectona grandis tree sawdust. The applied process of two-stage preparation included pre-treatment through hydrothermal carbonization at 190 °C and subsequent pyrolysis at 800 °C. Two chemical activating agents (K2CO3 and ZnCl2) were used to prepared activated carbons (K2CO3-AC and ZnCl2-AC), respectively. They were characterized by textural property, morphology, and surface element components and applied to remove Cr(VI) from solution at various solution pH values and initial Cr(VI) concentrations. Results showed that the textural parameters (SBET and VTotal) of the prepared material were 1757 m2/g and 1.027 cm3/g for Zn-Cl2-AC, 1013 m2/g and 0.418 cm3/g for K2CO3-AC, and 792 m2/g and 0.345 cm3/g for biochar. The adsorption process reached the highest efficiency at pH 3.0. The Langmuir maximum adsorption capacity indicated the decreasing order: ZnCl2-AC (127 mg/g) > K2CO3-AC (103 mg/g) > biochar (83.5 mg/g). The removal mechanism of Cr(V) from solution was regarded as an adsorption-coupled reduction, namely (1) partial reduction of Cr(VI) into Cr(III) during the adsorption process and (2) adsorption of the Cr(VI) anions through electrostatic attraction and pore filling and the reduced Cr(III) cations through complexation, Cπ-cation interaction, cation exchange, and pore filing. Therefore, the prepared biochar and activated carbon can server as promising adsorbents to efficiently remove both Cr(VI) and Cr(III) from water.
CITATION STYLE
Vo, A. T., Nguyen, V. P., Ouakouak, A., Nieva, A., Doma, B. T., Tran, H. N., & Chao, H. P. (2019). Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: Adsorption-coupled reduction mechanism. Water (Switzerland), 11(6). https://doi.org/10.3390/w11061164
Mendeley helps you to discover research relevant for your work.