Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

250Citations
Citations of this article
271Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications.

Cite

CITATION STYLE

APA

Hinuma, Y., Hatakeyama, T., Kumagai, Y., Burton, L. A., Sato, H., Muraba, Y., … Oba, F. (2016). Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nature Communications, 7. https://doi.org/10.1038/ncomms11962

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free