TF-IDF ve Doc2Vec Tabanlı Türkçe Metin Sınıflandırma Sisteminin Başarım Değerinin Ardışık Kelime Grubu Tespiti ile Arttırılması

  • GÜRAN A
  • KINIK D
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

TF-IDF terim ağırlıklandırma ölçümü kelimelerin metinler içinde geçme sıklığı bilgisine dayalıdır. Bu ölçüm kelimeler arasındaki anlamsal ilişkiyi barındırmamaktadır. Yapay sinir ağlarına dayalı olan Doc2Vec metodu kelimeler ve kelimeleri içeren dokümanlar arasındaki anlamsal ilişkiyi barındırmakta ve yönetilebilir boyutlu doküman vektörlerinin elde edilmesini sağlamaktadır. Ardışık kelime gurubu tespitinin metin madenciliği üzerindeki olumlu etkileri literatürde sunulan pek çok çalışma tarafından belirtilmiştir. Ardışık kelime gurubu tespiti doküman içindeki anlamsal bütünlüğün sağlanması açısından önemlidir. Bu çalışmada, hem geleneksel TF-IDF terim ağırlıklandırma ölçümünün, hem de YSA’lara dayalı bir yöntem olan Doc2Vec yönteminin kullanımı ile vektörleştirilen dokümanlar üzerinde temel makine öğrenmesi sınıflandırıcılarının ve topluluk öğrenmesi algoritmalarının başarım değerleri kıyaslanmıştır. Çalışmamızda temel sınıflandırıclar olarak Naive Bayes, K-En yakın komşuluk, Lojistik Regresyon, Karar Destek Makineleri, Karar Ağaçları, Çok Katmanlı Algılayıcılar ve topluluk öğrenmesi metotlarından Rassal Orman, Torbalama ve Adaboost algoritmaları kullanılmıştır. Ayrıca son olarak en başarılı üç sınıflandırma algoritması Çoğunluk oylaması ile birleştirilmiş ve elde edilen sonuçlar paylaşılmıştır. Sınıflandırıcılar farklı uzunluklarda haber dokümanlarını içeren 4 farklı Türkçe veri kümesi üzerinde uygulanmıştır. Çalışmamızın literatüre olan katkısı sınıflandırma aşamasına geçilmeden önce dokümanların içindeki ardışık kelime grubu tespitinin gerçekleştirilmesi ve dokümanların bu kelime öbeklerinin tek bir kelime gibi ele alınmasıyla vektörleştirildikten sonra, uygulanan sınıflandırıcıların başarım değerlerinin arttığının gösterilmesi olmuştur. Ardışık kelime grubu tespiti için kelimelerin birlikte geçme sıklığı prensibine dayalı olan bir prensip dışında, Türkçe Vikipedi’nin kelime bağlantıları da kullanılmış ve dokümanlar içinde az sayıda geçmesine rağmen anlamlı olan ardışık kelime öbeklerinin tespiti gerçekleştirilebilmiştir. Ardışık kelime grubu tespiti ile sınıflandırma deneylerinin hemen hemen tümünde daha yüksek başarım değerleri elde edilmiştir.

Cite

CITATION STYLE

APA

GÜRAN, A., & KINIK, D. (2021). TF-IDF ve Doc2Vec Tabanlı Türkçe Metin Sınıflandırma Sisteminin Başarım Değerinin Ardışık Kelime Grubu Tespiti ile Arttırılması. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.774144

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free