Analysis of an internal combustion engine using porous foams for thermal energy recovery

9Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

Cite

CITATION STYLE

APA

Ehyaei, M. A., Tanehkar, M., & Rosen, M. A. (2016). Analysis of an internal combustion engine using porous foams for thermal energy recovery. Sustainability (Switzerland), 8(3). https://doi.org/10.3390/su8030267

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free