Abstract
In this study, the upgrading of Iraqi heavy crude oil was achieved utilizing the solvent deasphalting approach (SDA) and enhanced solvent deasphalting (e-SDA) by adding Nanosilica (NS). The NS was synthesized from local sand. The XRD result, referred to as the amorphous phase, has a wide peak at 2Θ= (22 - 23º) The inclusion of hydrogen-bonded silanol groups (Si–O–H) and siloxane groups (Si–O–Si) in the FTIR spectra. The SDA process was handled using n-pentane solvent at various solvent to oil ratios (SOR) (4-16/1ml/g), room and reflux temperature, and 0.5 h mixing time. In the e-SDA process, various fractions of the NS (1–7 wt.%) have been utilized with 61 nm particle size and 560.86 m2/g surface area in the presence of 12 ml/g SOR with 0.5 hr. mixing time at room and reflux temperature. The results showed that heavy crude was upgraded maximally using 7 wt.% of NS. The API increased to 35.9, while the asphaltene reduction increased to 87.22%. The removal of sulfur, vanadium, and nickel increased to 51.17%, 55.07%, and 69.87%, respectively.
Author supplied keywords
Cite
CITATION STYLE
Shakir, F., Hussein, H. Q., & Abdulwahhab, Z. T. (2023). Influence of Nanosilica on Solvent Deasphalting for Upgrading Iraqi Heavy Crude Oil. Baghdad Science Journal, 20(1), 144–156. https://doi.org/10.21123/bsj.2022.6895
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.