Abstract
Time-Sensitive Networking (TSN) provides end-to-end data transmission with extremely low delay and high reliability on the basis of Ethernet. It is suitable for time-sensitive applications and will be widely used in scenarios such as autonomous driving and industrial Internet. IEEE 802.1Qbv proposes a time-aware shaper mechanism, which enables switches to control the forwarding of traffic in port queues according to pre-defined Gate Control List (GCL). The length of the GCL is limited, and the previous method of scheduling cycle with a hyper period may result in a larger GCL. Based on Satisfiability Modulo Theories (SMT), we propose a TSN scheduling method for industrial scenarios and develops a series of scheduling constraints. Different from the previous scheduling methods, the method proposed in this paper adopts the base period cycle to update GCL regularly, which can effectively reduce the number of time slots in GCL and make the configuration of GCL simpler and more efficient. In addition, compared with the traditional hyper period method, the method proposed in this paper can calculate the scheduling results faster while ensuring low latency and reducing the runtime effectively.
Author supplied keywords
Cite
CITATION STYLE
Li, Q., Li, D., Jin, X., Wang, Q., & Zeng, P. (2020). A simple and efficient time-sensitive networking traffic scheduling method for industrial scenarios. Electronics (Switzerland), 9(12), 1–19. https://doi.org/10.3390/electronics9122131
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.