A separated foundation model was proposed in order to reduce the calculation scale of the numerical model for analyzing soil-bridge structure dynamics. The essence of the wave input analysis model considering soil-structure interaction was analyzed. Based on the large mass method, a one-dimensional time-domain algorithm of the free field was derived. This algorithm could simulate the specified ground motion input well. The displacement expansion solution of the free wave field was solved based on the propagation law of waves in a medium. By separating the soil foundations around the pile foundations of the bridge, the ground motion was transformed into an equivalent load applied on an artificial boundary. The separated foundation model could consider the incoherence effect and soil-structure interaction simultaneously; the number of model elements were reduced, and the computational efficiency was improved. In order to investigate the seismic response of a curved bridge considering soil-structure interaction under spatially varied earthquakes, a curved bridge with small radius was adopted in practical engineering. Spatially correlated multi-point ground motion time histories were generated, and the nonuniform ground motion field was simulated based on the wave input method on an artificial viscoelastic boundary. The effects of different apparent wave velocities, coherence values, and site conditions on the seismic response of the bridge were analyzed. The results showed that the spatial variation of seismic ground motion had a considerable effect on the bending moment and the torsion of the girder. The site effect had great influence on the bending moment of the pier bottom. When considering soil-structure interaction, the spatial variation of ground motion should be fully considered to avoid underestimating the structural response.
CITATION STYLE
Zhang, L., & Gu, Y. (2020). Seismic analysis of a curved bridge considering soil-structure interactions based on a separated foundation model. Applied Sciences (Switzerland), 10(12). https://doi.org/10.3390/app10124260
Mendeley helps you to discover research relevant for your work.