Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme

5Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Subventricular zone (SVZ) involvement is associated with a dismal prognosis in patients with glioblastoma multiforme (GBM). Dual-time point (dtp) O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET/CT (PET) may be a time- and cost-effective alternative to dynamic FET PET, but its prognostic value, particularly with respect to SVZ involvement, is unknown. Methods: Thirty-five patients had two scans 5-15 and 50-60 min after i.v. FET injection to define tumor volumes and SVZ involvement before starting radiotherapy. Associations between clinical progression markers, MRI- and dtp FET PET-based tumor volumes, or SVZ involvement and progression-free (PFS) and overall survival (OS) were assessed in univariable and multivariable analyses. Results: The extent of resection was not related to outcomes. Albeit non-significant, dtp FET PET detected more SVZ infiltration than MRI (60% vs. 51%, p = 0.25) and was significantly associated with poor survival (p < 0.03), but PET-T1-Gad volumes were larger in this group (p < 0.002). Survival was shorter in patients with larger MRI tumor volumes, larger PET tumor volumes, and worse Karnofsky performance status (KPS), with fused PET-T1-Gad and KPS significant in multivariable analysis (p < 0.03). Uptake kinetics was not associated with treatment outcomes. Conclusions: FET PET-based tumor volumes may be useful for predicting worse prognosis glioblastoma. Although the presence of SVZ infiltration is linked to higher PET/MRI-based tumor volumes, the independent value of dtp FET PET parameters and SVZ infiltration as prognostic markers pre-irradiation has not been confirmed.

Cite

CITATION STYLE

APA

Harat, M., Małkowski, B., & Roszkowski, K. (2019). Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme. Radiation Oncology, 14(1). https://doi.org/10.1186/s13014-019-1241-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free