In atherosclerotic plaques, infectious agents from microbes may release Lipopolysaccharide (LPS) and heat shock proteins that can stimulate the production of mediators, i.e., pro-inflammatory cytokines, by vascular endothelial cells and Smooth Muscle Cells (SMCs). The elevated level of Interleukin-6 (IL-6) is strongly associated with the development of atherosclerosis. Here, we investigated whether curcumin isolated from the rhizome of Curcuma longa affected the expression of IL-6 at protein and gene levels in rat smooth muscle cells treated with LPS in vitro by conducting ELISA and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assays. LPS at 2 µg mL -1 activated the expression of IL-6 protein and mRNA in SMCs. Curcumin (1-15 µM) caused the decreased levels of IL-6 protein and mRNA in the dose-dependent manner in LPS-induced SMCs, indicating its potential antiatherosclerotic effect for cardiovascular risk management. In addition, curcumin also partially blocked the activation of LPS-induced phosphorylation of MAP kinases, i.e., ERK1/2, p38 and JNK, in SMCs, suggesting it may inhibit IL-6 expression via attenuating MAP kinase signaling pathways in LPS-induced SMCs. These data may in part explain the molecular action of antiatherosclerotic effects of curcumin.
CITATION STYLE
Yanti, Stephanie, Yuliani, Winarno, F. G., & Suhartono, M. T. (2014). Inhibition of interleukin-6 expression by curcumin in rat vascular smooth muscle explants in vitro. American Journal of Biochemistry and Biotechnology, 10(4), 260–266. https://doi.org/10.3844/ajbbsp.2014.260.266
Mendeley helps you to discover research relevant for your work.