A New Forest Growing Stock Volume Estimation Model Based on AdaBoost and Random Forest Model

16Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Forest growing stock volume is a crucial indicator for assessing forest resources. However, contemporary machine learning models used in estimating forest growing stock volume often exhibit fluctuating precision and are confined to specific tree species, lacking universality. This limitation impedes their capacity to provide comprehensive forest survey services. This study designed a novel model for predicting forest growing stock volume named RF-Adaboost. The model represented the inaugural application of the Adaboost algorithm in estimating forest growing stock volume. Additionally, the authors innovatively refined the Adaboost algorithm by integrating Random Forest as its weak learner. To substantiate the model’s effectiveness, the authors designed three data combination schemes at different scales and conducted regression estimation using the RF-Adaboost model, traditional Random Forest, and Adaboost models, respectively. The results indicated that the RF-Adaboost model consistently outperforms others across various data schemes. Furthermore, utilizing a combined data scheme of remote sensing and Continuous Forest Inventory, the RF-Adaboost model demonstrated optimal performance in estimating forest growing stock volume (R2 = 0.81, RMSE = 7.08 m3/site, MAE = 3.36 m3, MAPE = 8%). Finally, the RF-Adaboost model exhibits greater universality, eliminating the need for strict differentiation between tree species. This research presented an efficient and cost-effective approach to estimate forest growing stock, addressing the challenges associated with conventional survey methods.

Cite

CITATION STYLE

APA

Wang, X., Zhang, C., Qiang, Z., Xu, W., & Fan, J. (2024). A New Forest Growing Stock Volume Estimation Model Based on AdaBoost and Random Forest Model. Forests, 15(2). https://doi.org/10.3390/f15020260

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free