LS-SVM: uma nova ferramenta quimiométrica para regressão multivariada. Comparação de modelos de regressão LS-SVM e PLS na quantificação de adulterantes em leite em pó empregando NIR

  • Ferrão M
  • Mello C
  • Borin A
  • et al.
N/ACitations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R-2, RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.

Cite

CITATION STYLE

APA

Ferrão, M. F., Mello, C., Borin, A., Maretto, D. A., & Poppi, R. J. (2007). LS-SVM: uma nova ferramenta quimiométrica para regressão multivariada. Comparação de modelos de regressão LS-SVM e PLS na quantificação de adulterantes em leite em pó empregando NIR. Química Nova, 30(4), 852–859. https://doi.org/10.1590/s0100-40422007000400018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free