Overlap of movement planning and movement execution reduces reaction time

26Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. NEW & NOTEWORTHY In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset.

Cite

CITATION STYLE

APA

Orban de Xivry, J. J., Legrain, V., & Lefèvre, P. (2017). Overlap of movement planning and movement execution reduces reaction time. Journal of Neurophysiology, 117(1), 117–122. https://doi.org/10.1152/jn.00728.2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free