Abstract
In contrast to conventional batteries, anode-free configurations can extend cell-level energy densities closer to the theoretical limit. However, realizing alkali metal plating/stripping on a bare current collector with high reversibility is challenging, especially at low temperature, as an unstable solid-electrolyte interphase and uncontrolled dendrite growth occur more easily. Here, a low-temperature anode-free potassium (K) metal non-aqueous battery is reported. By introducing Si-O-based additives, namely polydimethylsiloxane, in a weak-solvation low-concentration electrolyte of 0.4 M potassium hexafluorophosphate in 1,2-dimethoxyethane, the in situ formed potassiophilic interface enables uniform K deposition, and offers K||Cu cells with an average K plating/stripping Coulombic efficiency of 99.80% at −40 °C. Consequently, anode-free Cu||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride full batteries achieve stable cycling with a high specific energy of 152 Wh kg−1 based on the total mass of the negative and positive electrodes at 0.2 C (26 mA g−1) charge/discharge and −40 °C.
Cite
CITATION STYLE
Tang, M., Dong, S., Wang, J., Cheng, L., Zhu, Q., Li, Y., … Wang, H. (2023). Low-temperature anode-free potassium metal batteries. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41778-6
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.