Characterizing the spatial variations and correlations of large rainstorms for landslide study

25Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Rainfall is the primary trigger of landslides in Hong Kong; hence, rainstorm spatial distribution is an important piece of information in landslide hazard analysis. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-Triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a rotated ellipsoid trend surface and a random field of residuals. The maximum rolling 4, 12, 24, and 36 h rainfall amounts of these storms are assessed via surface trend fitting, and the spatial correlation of the detrended residuals is determined through studying the scales of fluctuation along eight directions. The principal directions of the surface trend are between 19 and 43-, and the major and minor axis lengths are 83-386 and 55-79 km, respectively. The scales of fluctuation of the residuals are found between 5 and 30 km. The spatial distribution parameters for the three large rainstorms are found to be similar to those for four ordinary rainfall events. The proposed rainfall spatial distribution model and parameters help define the impact area, rainfall intensity and local topographic effects for landslide hazard evaluation in the future.

Cite

CITATION STYLE

APA

Gao, L., Zhang, L., & Lu, M. (2017). Characterizing the spatial variations and correlations of large rainstorms for landslide study. Hydrology and Earth System Sciences, 21(9), 4573–4589. https://doi.org/10.5194/hess-21-4573-2017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free