Mechanisms of protease-activated receptor-4 actions in cardiomyocytes: Role of Src tyrosine kinase

79Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Protease-activated receptor (PAR)-4 is a low affinity thrombin receptor with slow activation and desensitization kinetics relative to PAR-1. This study provides novel evidence that cardiomyocytes express functional PAR-4 whose signaling phenotype is distinct from PAR-1 in cardiomyocytes. AYPGKF, a modified PAR-4 agonist with increased potency at PAR-4, activates p38-mitogen-activated protein kinase but is a weak activator of phospholipase C, extracellular signal-regulated kinase, and cardiomyocyte hypertrophy; AYPGKF and thrombin, but not the PAR-1 agonist SFLLRN, activate Src. The observation that AYPGKF and thrombin activate Src in cardiomyocytes cultured from PAR-1-/- mice establishes that Src activation is via PAR-4 (and not PAR-1) in cardiomyocytes. Further studies implicate Src and epidermal growth factor receptor (EGFR) kinase activity in the PAR-4-dependent p38-mitogen-activated protein kinase signaling pathway. Thrombin phosphorylates EGFRs and ErbB2 via a PP1-sensitive pathway in PAR-1-/- cells that stably overexpress PAR-4; the Src-mediated pathway for EGFR/ErbB2 transactivation underlies the protracted phases of thrombin-dependent extracellular signal-regulated kinase activation in PAR1--/- cells that overexpress PAR-4 and in cardiomyocytes. These studies identify a unique signaling phenotype for PAR-4 (relative to other cardiomyocyte G protein-coupled receptors) that is predicted to contribute to cardiac remodeling and influence the functional outcome at sites of cardiac inflammation.

Cite

CITATION STYLE

APA

Sabri, A., Guo, J., Elouardighi, H., Darrow, A. L., Andrade-Gordon, P., & Steinberg, S. F. (2003). Mechanisms of protease-activated receptor-4 actions in cardiomyocytes: Role of Src tyrosine kinase. Journal of Biological Chemistry, 278(13), 11714–11720. https://doi.org/10.1074/jbc.M213091200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free