Ensemble evaluation of hydrological model hypotheses

87Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a “leaking” of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error.

Cite

CITATION STYLE

APA

Krueger, T., Freer, J., Quinton, J. N., Macleod, C. J. A., Bilotta, G. S., Brazier, R. E., … Haygarth, P. M. (2010). Ensemble evaluation of hydrological model hypotheses. Water Resources Research, 46(7). https://doi.org/10.1029/2009WR007845

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free