Role of miR-520b in non-small cell lung cancer

15Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The aim of the present study was to investigate the expression of microRNA (miR)-520b in non-small cell lung cancer (NSCLC) and its biological functions. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of miR-520b in 52 cases of NSCLC tissues, and its associations with tumor clinical staging and lymph node metastasis were analyzed. miR-520b mimics was transfected into A549 and Calu-3 cells. Cell proliferation, cell cycle, and cell invasion and migration abilities were assessed via cell counting kit-8 assay, flow cytometry and Transwell chamber assay, respectively. Western blot analysis was performed to detected protein expression levels, and dual luciferase reporter assay was used to detect the gene interaction. miR-520b expression was significantly downregulated in NSCLC. The expression of miR-520b in tumor tissues at N1 stage was lower than that at the N0 stage. miR-520b expression was negatively associated with clinical TNM staging. Furthermore, miR-520b mimic transfection inhibited the proliferation and invasion and metastasis abilities of A549 and Calu-3 cells. The expression of Rab22A was downregulated in the miR-520b mimics-transfected cells, whereas E-cadherin expression was increased, and vimentin expression was downregulated. Dual luciferase reporter assay demonstrated that miR-520b directly targeted the expression of Rab22A. Furthermore, Rab22A reversal downregulated the inhibitory effect of miR-520b. miR-520b expression was downregulated in NSCLC, which was negatively correlated with lymph node metastasis and TNM staging. miR-520b targeted on Rab22A to work as a tumor suppressor, inhibiting tumor proliferation and metastasis.

Cite

CITATION STYLE

APA

Zhang, L., & Yu, S. (2018). Role of miR-520b in non-small cell lung cancer. Experimental and Therapeutic Medicine, 16(5), 3987–3995. https://doi.org/10.3892/etm.2018.6732

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free