Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion

12Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.

Cite

CITATION STYLE

APA

Jurkaš, V., Weissensteiner, F., De Santis, P., Vrabl, S., Sorgenfrei, F. A., Bierbaumer, S., … Kroutil, W. (2022). Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion. Angewandte Chemie - International Edition, 61(40). https://doi.org/10.1002/anie.202207971

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free