Keyframe Selection for Visual Localization and Mapping Tasks: A Systematic Literature Review

11Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Visual localization and mapping algorithms attempt to estimate, from images, geometrical models that explain ego motion and the positions of objects in a real scene. The success of these tasks depends directly on the quality and availability of visual data, since the information is recovered from visual changes in images. Keyframe selection is a commonly used approach to reduce the amount of data to be processed as well as to prevent useless or wrong information to be considered during the optimization. This study aims to identify, analyze, and summarize the methods present in the literature for keyframe selection within the context of visual localization and mapping. We adopt a systematic literature review (SLR) as the basis of our work, built on top of a well-defined methodology. To the best of our knowledge, this is the first review related to this topic. The results show that there is a lack of studies present in the literature that directly address the keyframe selection problem in this application context and a deficiency in the testing and validation of the proposed methods. In addition to these findings, we also propose an updated categorization of the proposed methods on top of the well-discussed categories present in the literature. We believe that this SLR is a step toward developing a body of knowledge in keyframe selection within the context of visual localization and mapping tasks by encouraging the development of more theoretical and less heuristic methods and a systematic testing and validation process.

Cite

CITATION STYLE

APA

Dias, N. J. B., Laureano, G. T., & Da Costa, R. M. (2023, June 1). Keyframe Selection for Visual Localization and Mapping Tasks: A Systematic Literature Review. Robotics. MDPI. https://doi.org/10.3390/robotics12030088

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free