Human Umbilical Cord Mesenchymal Stem Cells Prevent Bacterial Biofilm Formation

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Biofilm formation is easily found in patients suffered from ventilator-associated pneumonia (VAP) in neonatal intensive care unit (NICU) and makes the VAP infections not only harder to be treated but easier to relapse. In order to find some novel ways to inhibit biofilm formation, this study describe a previously unrecognized role for the human umbilical cord mesenchymal stem cells (hUCMSCs). In addition to multiple differentiation, hUCMSCs have the ability to prevent the biofilms formation in vitro by secreting antibacterial peptides (LL-37 and hBD-2). This occurred while P. aeruginosa PA27853 and hUCMSCs were cocultured, and the filtrated medium, which was the supernatant containing antibacterial peptides (5.9 ng/ml of LL-37, 1.77 ng/ml of hBD-2), and inhibited the growth of the bacterial biofilm on the surface of tracheal tube (2.5#, for preterm infant). Using microarrays, we were able to demonstrate that the antibacterial peptides from hUCMSC affected biofilm formation by downregulating the gene-encoded polysaccharide biosynthesis protein. In addition, in order to find out the most suitable concentration of hUCMSCs, P. aeruginosa was cocultured with eight-level concentrations of hUCMSCs, and we found that the concentration of LL-37 was positively correlated with the concentration of hUCMSCs. Meanwhile, the concentration of LL-37 became stable while the hUCMSC concentration reaches higher than 5×106 cells/ml. But the concentration of hBD-2 had no significant correlation with hUCMSCs. The collection of these stem cells is not only limited by ethics but also reduces host rejection. This makes it possible to use autologous hUCMSCs to treat neonatal VAP.

Cite

CITATION STYLE

APA

Yang, H., Xu, F., Zheng, X., Yang, S., Ren, Z., & Yang, J. (2022). Human Umbilical Cord Mesenchymal Stem Cells Prevent Bacterial Biofilm Formation. BioMed Research International, 2022. https://doi.org/10.1155/2022/1530525

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free