Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach

24Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The fatigue strength of a component is known to highly depend on its surface quality, and it is thus necessary to develop a reliable and appropriate mathematical model for fatigue strength assessment that consider the effect of surface roughness. In this paper, different underlying physical mechanisms of the roughness effect at different regions of specimens were studied by fatigue testing of 7N01 aluminum alloy. For a quantitative analysis of the surface roughness effect, a revised stress field intensity approach for a fatigue strength assessment of microsized notches was proposed as a theoretical support. In the new model, a new form of weight function was built to adapt the characteristics of microsized notches. In addition, the effect of the field radius was fundamentally weakened on solution of the stress field intensity and the difficulty of fatigue failure region definition in the traditional method was overcome correspondingly in the proposed model, which made the calculated field strength accurate and objective. Finally, to demonstrate the validity of the revised approach quantitatively, specimens with conventionally sized notches were subjected to stress field intensity calculations. The results showed that the revised approach has satisfactory accuracy compared with the other two traditional approaches from the perspective of quantitative analysis.

Cite

CITATION STYLE

APA

Zhao, B., Song, J., Xie, L., Hu, Z., & Chen, J. (2021). Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-98858-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free