Design, Synthesis, and Molecular Docking Studies of Some New Quinoxaline Derivatives as EGFR Targeting Agents

10Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Abstract: The synthesis of some new quinoxaline derivatives (IVa–n) and their structure determination using 1H NMR, 13C NMR and mass spectral analysis was described herein. The in vitro anti-cancer activity of the these compounds (IVa–n) revealed that the compound1-((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVd) has shown promising activity, whereas, compounds 1-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVa), 1-(tetrazolo[1,5-a]quinoxalin-4-yl)-2-((1-(m-tolyl)-1H-1,2,3-triazol-4-yl)methyl)pyrazolidine-3,5-dione (IVb), 1-((1-(3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVh) and 1-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVi) exhibited good to moderate activity against four human cancer cell lines such as HeLa, MCF-7, HEK 293T, and A549 as compared to the doxorubicin. Predominantly, the compound displayed excellent activity over HeLa, MCF-7, HEK 293T, and A549 with IC50 values of 3.20 ± 1.32, 4.19 ± 1.87, 3.59 ± 1.34, and 5.29 ± 1.34 μM, respectively. Moreover, molecular docking studies of derivatives (IVa–n) on EGFR receptor suggested that the most potent compound strongly binds to protein EGFR (pdbid:4HJO) and the energy calculations of in silico studies were also in good agreement with the obtained IC50 values.

Cite

CITATION STYLE

APA

Badithapuram, V., Nukala, S. K., Thirukovela, N. S., Dasari, G., Manchal, R., & Bandari, S. (2022). Design, Synthesis, and Molecular Docking Studies of Some New Quinoxaline Derivatives as EGFR Targeting Agents. Russian Journal of Bioorganic Chemistry, 48(3), 565–575. https://doi.org/10.1134/S1068162022030220

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free