We have demonstrated spatially-discontinuous quantum jumps of electrons at a distance as long as about 1cm. The effect occurs in a modified integer quantum Hall system consisted of a great number of extended Laughlin-Halperin-type states. Our observations directly contradict the no-aether Einstein's interpretation of special relativity together with the Minkowski's model of spacetime. However they are consistent with the aether-related Lorentz-Poincare's interpretation that allows absolute simultaneity. We thus strongly challenge the fundamental status of Lorentz invariance and hence break the basic argument against de Broglie-Bohm realistic quantum theory. We argue that both de Broglie-Bohm and Lorentz-Poincare theories are capable of providing a real synthesis of quantum and relativity theories. This synthesis is of such kind that quantum theory appears the most fundamental physical theory for which relativity is only a limiting case. In accordance with this hierarchy, quantum theory naturally resolves the problem of aether in Lorentz-Poincare's relativity. The role of aether could be played by a deeper Bohm-type undivided quantum pre-space, the relevance of which at any lengthscale directly follows from our observations. © Published under licence by IOP Publishing Ltd.
CITATION STYLE
Emelyanov, S. A. (2013). Toward a real synthesis of quantum and relativity theories: Experimental evidence for absolute simultaneity. In Journal of Physics: Conference Series (Vol. 442). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/442/1/012035
Mendeley helps you to discover research relevant for your work.