Purpose We aimed to determine the epidermal growth factor receptor (EGFR) genetic profile of lung cancer in Asians, and develop and validate a non-invasive prediction scoring system for EGFR mutation before treatment. Methods This was a single-center retrospective cohort study using data of patients with lung cancer who underwent EGFR detection (n = 1450) from December 2014 to October 2020. Independent predictors were filtered using univariate and multivariate logistic regression analyses. According to the weight of each factor, a prediction scoring system for EGFR mutation was constructed. The model was internally validated using bootstrapping techniques and temporally validated using prospectively collected data (n = 210) between November 2020 and June 2021.Results In 1450 patients with lung cancer, 723 single mutations and 51 compound mutations were observed in EGFR. Thirty-nine cases had two or more synchronous gene mutations. We developed a scoring system according to the independent clinical predictors and stratified patients into risk groups according to their scores: low-risk (score <4), moderate-risk (score 4-8), and high-risk (score >8) groups. The C-statistics of the scoring system model was 0.754 (95% CI 0.729-0.778). The factors in the validation group were introduced into the prediction model to test the predictive power of the model. The results showed that the C-statistics was 0.710 (95% CI 0.638-0.782). The Hosmer–Lemeshow goodness-of-fit showed that χ2 = 6.733, P = 0.566. Conclusions The scoring system constructed in our study may be a non-invasive tool to initially predict the EGFR mutation status for those who are not available for gene detection in clinical practice.
CITATION STYLE
An, W., Fan, W., Zhong, F., Wang, B., Wang, S., Gan, T., … Liao, M. (2022). Development and Validation of a Concise Prediction Scoring System for Asian Lung Cancer Patients with EGFR Mutation Before Treatment. Technology in Cancer Research and Treatment, 21. https://doi.org/10.1177/15330338221078732
Mendeley helps you to discover research relevant for your work.