Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is a 35-kDa glycoprotein that has been shown to exert anti-inflammatory effects in experimental models of arthritis, acute myocardial infarction, and acute cerebral infarction. Several lines of evidence have shed light on the pathophysiological roles of TSG-6 in atherosclerosis. TSG-6 suppresses inflammatory responses of endothelial cells, neutrophils, and macrophages as well as macrophage foam cell formation and vascular smooth muscle cell (VSMC) migration and proliferation. Exogenous TSG-6 infusion and endogenous TSG-6 attenuation with a neutralizing antibody for four weeks retards and accelerates, respectively, the development of aortic atherosclerotic lesions in ApoE-deficient mice. TSG-6 also decreases the macrophage/VSMC ratio (a marker of plaque instability) and promotes collagen fibers in atheromatous plaques. In patients with coronary artery disease (CAD), plasma TSG-6 levels are increased and TSG-6 is abundantly expressed in the fibrous cap within coronary atheromatous plaques, indicating that TSG-6 increases to counteract the progression of atherosclerosis and stabilize the plaque. These findings indicate that endogenous TSG-6 enhancement and exogenous TSG-6 replacement treatments are expected to emerge as new lines of therapy against atherosclerosis and related CAD. Therefore, this review provides support for the clinical utility of TSG-6 in the diagnosis and treatment of atherosclerotic cardiovascular diseases.
Author supplied keywords
Cite
CITATION STYLE
Watanabe, R., Sato, Y., Ozawa, N., Takahashi, Y., Koba, S., & Watanabe, T. (2018, February 5). Emerging roles of tumor necrosis factor-stimulated gene-6 in the pathophysiology and treatment of atherosclerosis. International Journal of Molecular Sciences. MDPI AG. https://doi.org/10.3390/ijms19020465
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.