In order to overcome process instability and buffer deficiency in the anaerobic digestion of mono food waste (FW), chemically enhanced primary sludge (CEPS) was selected as a co-substrate for FW treatment. In this study, batch tests were conducted to study the effects of CEPS/FW ratios on anaerobic co-digestion (coAD) performances. Both soluble chemical oxygen demand (SCOD) and protease activity were decreased, with the CEPS/FW mass ratio increasing from 0:5 to 5:0. However, it was also found that the accumulation of volatile fatty acids (VFAs) was eliminated by increasing the CEPS/FW ratio, and that corresponding VFAs concentrations decreased from 13,872.97 to 1789.98 mg chemical oxygen demand per L (mg COD/L). In addition, the maximum value of cumulative biogas yield (446.39 mL per g volatile solids removal (mL/g VSsremoval)) was observed at a CEPS/FW ratio of 4:1, and that the tendency of coenzyme F420 activity was similar to biogas production. The mechanism analysis indicated that Fe-based CEPS relived the VFAs accumulation caused by FW, and Fe(III) induced by Fe-based CEPS enhanced the activity of F420. Therefore, the addition of Fe-based CEPS provided an alternative method for FW treatment.
CITATION STYLE
Kang, X., & Liu, Y. (2019). Chemically enhanced primary sludge as an anaerobic co-digestion additive for biogas production from food waste. Processes, 7(10). https://doi.org/10.3390/pr7100709
Mendeley helps you to discover research relevant for your work.