MiR-142-5p Protects Against 6-OHDA-Induced SH-SY5Y Cell Injury by Downregulating BECN1 and Autophagy

15Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: MiR-142-5p has been demonstrated to hold significant implications in neurological diseases. However, the impact and underlying regulatory mechanism of miR-142-5p in Parkinson’s disease (PD) are still ominous. Methods: To simulate the PD, 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cell model was used in this study. Levels of messenger RNA and protein were tested by quantitative real-time polymerase chain reaction and Western blot analyses, respectively. The direct interaction between miR-142-5p and Beclin 1 (BECN1) was assessed by luciferase reporter assay. Furthermore, Cell Counting Kit-8 assay was performed to assess cytotoxicity of SH-SY5Y cell. Results: In consequence, a significant decrease of miR-142-5p was observed in 6-OHDA-induced SH-SY5Y cells. Over-/Low-expressed miR-142-5p resulted in a significant enhancement/inhibition on cell vitalities of 6-OHDA-treated SH-SY5Y cells, which might be modulated by repressing cellular autophagy through inhibiting level of BECN1 and LC3 II/LC3 I and elevating P62 level. Luciferase reporter assay showed that the BECN1 was the target gene of miR-142-5p. Additionally, the loss/gain of BECN1 rescued/blocked the effects of miR-142-5p on the viability of 6-OHDA-induced SH-SY5Y cells. Conclusions: These results highlight that miR-142-5p functions as a neuroprotective regulator in 6-OHDA-induced neuronal SH-SY5Y cells simulating PD model in vitro via regulating autophagy-related protein BECN1 and autophagy to influence cell viability.

Cite

CITATION STYLE

APA

Chen, J., Jiang, C., Du, J., & Xie, C. L. (2020). MiR-142-5p Protects Against 6-OHDA-Induced SH-SY5Y Cell Injury by Downregulating BECN1 and Autophagy. Dose-Response, 18(1). https://doi.org/10.1177/1559325820907016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free