Abstract
Miscanthus spp. show excellent application prospects due to its bioenergy potential and multiple ecological services. Annual N export with biomass harvest from Miscanthus, even without fertilizer supplement, do not reduce soil N levels. The question arises regarding how Miscanthus can maintain stable soil N levels. Metagenomic strategies were used to reveal soil N-cycling-related microbiome and their functional contributions to processes of soil N-cycling based on the comparison among the bare land, cropland, 10-year Miscanthus × giganteus, and 15-year Miscanthus sacchariflorus fields. The results showed that, after long-term cropland-to-Miscanthus conversion (LCMC), 16 of 21 bacterial phyla and all the archaeal phyla exhibited significant changes. Soil microbial denitrification and nitrification functions were significantly weakened, and N fixation (NF) was significantly enhanced. The biosynthesis of amino acids, especially alanine, aspartate, and glutamate metabolism, in soil N-cycling-related microbiome was dramatically promoted. The genus Anaeromyxobacter contributed largely to the NF process after LCMC. Variations in the soil available potassium, available N, organic C, and total N contents drove a functional shift of soil microbiome from cropland to Miscanthus pattern. We conclude that Miscanthus can recruit Anaeromyxobacter communities to enhance NF benefiting its biomass sustainability and soil N balance.
Author supplied keywords
Cite
CITATION STYLE
Zhao, C., Yue, Y., Guo, Q., Wu, J., Song, J., Wang, Q., … Fan, X. (2023). Metagenomic insights into the alteration of soil N-cycling-related microbiome and functions under long-term conversion of cropland to Miscanthus. GCB Bioenergy, 15(9), 1105–1118. https://doi.org/10.1111/gcbb.13077
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.