Abstract
This paper presents a multi-agent system that handles unit micromanagement using online machine learning in real time strategy games. We used rtNEAT algorithm in order to obtain customized neural network topologies, thus avoiding to complex network architecture. We use an ontology based template to create suitable input and outputs for unit agents enabling them to cooperate and form teams for their mutual benefit and eliminating communication overhead. The AI system was implemented using the JADE framework and the BWAPI handled communication between our system and the game. We have chosen Starcraft as a testbed. As a baseline we compared the in game AI as well as several other AI solutions that use adaptive mechanisms.
Cite
CITATION STYLE
Gabriel, I., Negru, V., & Zaharie, D. (2014). Neuroevolution Based Multi-Agent System with Ontology Based Template Creation for Micromanagement in Real-Time Strategy Games. Information Technology And Control, 43(1). https://doi.org/10.5755/j01.itc.43.1.4600
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.