Benefits of the multi-modality formulation in hydrogen supply chain modelling

5Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Hydrogen is recognized as a key element of future low-carbon energy systems. For proper integration, an adequate delivery infrastructure will be required, to be deployed in parallel to the electric grid and the gas network. This work adopts an optimization model to support the design of a future hydrogen delivery infrastructure, considering production, storage, and transport up to demand points. The model includes two production technologies, i.e., steam reforming with carbon capture and PV-fed electrolysis systems, and three transport modalities, i.e., pipelines, compressed hydrogen trucks, and liquid hydrogen trucks. This study compares a multi-modality formulation, in which the different transport technologies are simultaneously employed and their selection is optimized, with a mono-modality formulation, in which a single transport technology is considered. The assessment looks at the regional case study of Lombardy in Italy, considering a long-term scenario in which an extensive hydrogen supply chain is developed to supply hydrogen for clean mobility. Results show that the multi-modality infrastructure provides significant cost benefits, yielding an average cost of hydrogen that is up to 11% lower than a mono-modality configuration.

Cite

CITATION STYLE

APA

Parolin, F., Colbertaldo, P., & Campanari, S. (2022). Benefits of the multi-modality formulation in hydrogen supply chain modelling. In E3S Web of Conferences (Vol. 334). EDP Sciences. https://doi.org/10.1051/e3sconf/202233402003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free