Abstract
This study describes the use of hybrid mass spectrometry for the mapping, identification, and semi-quantitation of triacylglycerol regioisomers in fats and oils. The identification was performed based on the accurate mass and fragmentation pattern obtained by data-dependent fragmentation. Quantitation was based on the high-resolution ion chromatograms, and relative proportion of sn-1-(3)/sn-2 regioisomers was calculated based on generalized fragmentation models and the relative intensities observed in the product ion spectra. The key performance features of the developed method are inter-batch mass accuracy < 1 ppm (n = 10); lower limit of detection (triggering threshold) 0.1 μg/ml (equivalent to 0.2 weight % in oil); lower limit of quantitation 0.2 μg/ml (equivalent to 0.4 weight % in oil); peak area precision 6.5% at 2 μg/ml concentration and 15% at 0.2 μM concentration; inter-batch precision of fragment intensities < 1% (n = 10) independent of the investigated concentration; and averaged accuracy using the generic calibration 3.8% in the 1-10 μg/ml range and varies between 1-23% depending on analytes. Inter-esterified fat, beef tallow, pork lard, and butter fat samples were used to show how well regioisomeric distribution of palmitic acid can be captured by this method. Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.
Author supplied keywords
Cite
CITATION STYLE
Nagy, K., Sandoz, L., Destaillats, F., & Schafer, O. (2013). Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry. Journal of Lipid Research, 54(1), 290–305. https://doi.org/10.1194/jlr.D031484
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.