Intelligent metaphotonics empowered by machine learning

130Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

Abstract

In the recent years, a dramatic boost of the research is observed at the junction of photonics, machine learning and artificial intelligence. A new methodology can be applied to the description of a variety of photonic systems including optical waveguides, nanoantennas, and metasurfaces. These novel approaches underpin the fundamental principles of light-matter interaction developed for a smart design of intelligent photonic devices. Artificial intelligence and machine learning penetrate rapidly into the fundamental physics of light, and they provide effective tools for the study of the field of metaphotonics driven by optically induced electric and magnetic resonances. Here we overview the evaluation of metaphotonics induced by artificial intelligence and present a summary of the concepts of machine learning with some specific examples developed and demonstrated for metasystems and metasurfaces.

Cite

CITATION STYLE

APA

Krasikov, S., Tranter, A., Bogdanov, A., & Kivshar, Y. (2022). Intelligent metaphotonics empowered by machine learning. Opto-Electronic Advances. Chinese Academy of Sciences. https://doi.org/10.29026/oea.2022.210147

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free