Phylogenetic signal in predator-prey body-size relationships

43Citations
Citations of this article
169Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Body mass is a fundamental characteristic that affects metabolism, life history, and population abundance and frequently sets bounds on who eats whom in food webs. Based on a collection of topological food webs, Ulrich Brose and colleagues presented a general relationship between the body mass of predators and their prey and analyzed how mean predator-prey body-mass ratios differed among habitats and predator metabolic categories. Here we show that the general body-mass relationship conceals significant variation associated with both predator and prey phylogeny. Major-axis regressions between the log body mass of predators and prey differed among taxonomic groups. The global pattern for Kingdom Animalia had slope .1, but phyla and classes varied, and several had slopes significantly ,1. The predator-prey body-mass ratio can therefore decrease or increase with increasing body mass, depending on the taxon considered. We also found a significant phylogenetic signal in analyses of prey body-mass range for predators and predator bodymass range for prey, with stronger signal in the former. Besides providing insights into how characteristics of trophic interactions evolve, our results emphasize the need to integrate phylogeny to improve models of community structure and dynamics or to achieve a metabolic theory of food-web ecology. © 2011 by the Ecological Society of America.

Cite

CITATION STYLE

APA

Naisbit, R. E., Kehrli, P., Rohr, R. P., & Bersier, L. F. (2011). Phylogenetic signal in predator-prey body-size relationships. Ecology, 92(12), 2183–2189. https://doi.org/10.1890/10-2234.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free