Distributed event-triggered output synchronization of complex-valued memristive reaction-diffusion complex networks with spatial sampled-data

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study addresses the problem of output quasisynchronization for coupled complex-valued memristive reaction-diffusion complex networks via the distributed event-triggered control scheme. First, by using the separate method, set value mapping, and intermediate value theorem, the complex-valued memristive reaction-diffusion complex networks can be transferred into two semi-uncertain real-valued reaction-diffusion complex networks. Second, a distributed output piecewise event-triggered control (OPETC) scheme with spatial sampled-data is first proposed including a spatial sampling event-triggered generator and spatiotemporal sampling state feedback controller. Furthermore, this scheme can effectively save the measurement resources and lower the update rate of controllers in spatial and time domain. Third, the synchronization analysis is considered by utilizing an appropriate Lyapunov function, the Halanay inequality, and the improved Wirtinger inequality. Subsequently, several output event-triggered quasisynchronization criteria are derived. The relations among event trigger conditions, spatial sampling interval, convergence rate, and control gain are given by rigorous mathematical derivation. Finally, multiple simulations are compared to substantiate the validation of the OPETC scheme.

Cite

CITATION STYLE

APA

Chen, T., & Cheng, Z. (2021). Distributed event-triggered output synchronization of complex-valued memristive reaction-diffusion complex networks with spatial sampled-data. Complexity, 2021. https://doi.org/10.1155/2021/5577675

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free