Abstract
Controlling the topological properties of quantum matter is a major goal of condensed matter physics. A major effort in this direction has been devoted to using classical light in the form of Floquet drives to manipulate and induce states with non-trivial topology. A different route can be achieved with cavity photons. Here we consider a prototypical model for topological phase transition, the one-dimensional Su-Schrieffer-Heeger model, coupled to a single mode cavity. We show that quantum light can affect the topological properties of the system, including the finite-length energy spectrum hosting edge modes and the topological phase diagram. In particular we show that depending on the lattice geometry and the strength of light-matter coupling one can either turn a trivial phase into a topological one or viceversa using quantum cavity fields. Furthermore, we compute the polariton spectrum of the coupled electron-photon system, and we note that the lower polariton branch disappears at the topological transition point. This phenomenon can be used to probe the phase transition in the Su-Schrieffer-Heeger model.
Cite
CITATION STYLE
Dmytruk, O., & Schirò, M. (2022). Controlling topological phases of matter with quantum light. Communications Physics, 5(1). https://doi.org/10.1038/s42005-022-01049-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.