Particulate emission rates for unpaved shoulders along a paved road

63Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper reports the first empirical estimate of particle emissions from unpaved shoulders along paved roads.1 Its objectives are to develop and demonstrate an emission rate measurement methodology that can be applied in different areas; identify the mechanisms that suspend dust from unpaved shoulders and the observables related to this suspension process; and quantify PM10 mass emissions in the form of an emission rate. To achieve these objectives, fast-response observations from nephelometers and a sonic anemometer were used to characterize shortlived dust plumes generated by passing vehicles. In addition, detailed soil surface measurements determined the mechanical properties of the shoulder surfaces. Large traffic-induced turbulence events that led to significant dust entrainment were almost exclusively caused by “large” vehicles such as trucks, semis, and vehicles pulling trailers, all traveling 50-65 mph. PM10 emission rates for these large, fast-traveling vehicles were determined to be 8 ± 4 grams per vehicle kilometer traveled under dry conditions. Emissions due to smaller vehicles such as cars, vans, and sport utility vehicles were negligible for normal on-road driving. These results indicate that the majority of PM10 emissions from unpaved shoulders is caused by relatively few vehicles. © 1998, Taylor & Francis Group, LLC. All rights reserved.

Cite

CITATION STYLE

APA

Moosmüller, H., Gillies, J. A., Rogers, C. F., DuBois, D. W., Chow, J. C., Watson, J. G., & Langston, R. (1998). Particulate emission rates for unpaved shoulders along a paved road. Journal of the Air and Waste Management Association, 48(5), 398–407. https://doi.org/10.1080/10473289.1998.10463694

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free