Abstract
We described a technology for immobilizing radioiodine in the sod-cages by the interzeolite transformation of iodine-containing LTA (zeolite A) and FAU (zeolites X and Y) into a sodalite (SOD) structure. The immobilization of iodine in the sod-cage was confirmed using diverse characterization methods including powder XRD, elemental analysis, SEM–EDS,127I MAS NMR, and I 3d XPS. Although both zeolites A (Na-A) and X (Na-X) were well converted into SOD structure in the presence of NaI and AgI, the iodide anions were fixed in the sod-cages only when NaI was used. The ability to adsorb methyl iodide (CH3I) was evaluated for zeolites A and X in which Na+ and/or Ag+ ions were exchanged, and Ag+ and zeolite X showed better adsorption properties than Na+ and zeolite A, respectively. However, when both CH3I adsorption ability and the successive immobilization of iodine by interzeolite transformation were considered, Na-X was determined to be the best candidate of adsorbent among the studied zeolites. More than 98% of the iodine was successfully immobilized in the sod-cage in the SOD structure by the interconversion of Na-X following CH3I adsorption, although the Na-X zeolite exhibited half the CH3I adsorption capacity of Ag-X.
Author supplied keywords
Cite
CITATION STYLE
An, H., Kweon, S., Park, S., Lee, J., Min, H. K., & Park, M. B. (2020). Immobilization of radioiodine via an interzeolite transformation to iodosodalite. Nanomaterials, 10(11), 1–13. https://doi.org/10.3390/nano10112157
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.