Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis

26Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Diabetic nephropathy (DN) is a severe complication of diabetes with type 1 and 2. Long non-coding RNAs (lncRNAs) are being found to be involved in the DN pathogenesis. In this study, we aimed to further explore the effect and underlying mechanism of plasmacytoma variant translocation 1 (PVT1) in DN pathogenesis. Methods: The expression levels of PVT1, miR-23b-3p, and Wilms tumor protein 1 (WT1) mRNA were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot analysis was performed to determine protein expression. Cell proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr-azolium (MTS) assay. The targeted correlation between miR-23b-3p and PVT1 or WT1 was verified by dual-luciferase reporter assay. Results: PVT1 and WT1 were highly expressed in the serum of DN patients and high glucose (HG)-induced mesangial cells (MCs). The knockdown of PVT1 or WT1 ameliorated HG-induced proliferation and fibrosis in MCs. Mechanistically, PVT1 modulated WT1 expression through acting as a molecular sponge of miR-23b-3p. The miR-23b-3p/WT1 axis mediated the protective effect of PVT1 knockdown on HG-induced proliferation and fibrosis in MCs. The NF-κB pathway was involved in the regulatory network of the PVT1/miR-23b-3p/WT1 axis in HG-induced MCs. Conclusion: Our study suggested that PVT1 knockdown ameliorated HG-induced proliferation and fibrosis in MCs at least partially by regulating the miR-23b-3p/WT1/NF-κB pathway. Targeting PVT1 might be a potential therapeutic strategy for DN treatment.

Author supplied keywords

Cite

CITATION STYLE

APA

Zhong, W., Zeng, J., Xue, J., Du, A., & Xu, Y. (2020). Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis. Diabetology and Metabolic Syndrome, 12(1). https://doi.org/10.1186/s13098-020-00539-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free