Nanoscale characterization of surface plasmon-coupled photoluminescence enhancement in pseudo micro blue leds using near-field scanning optical microscopy

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The microcave array with extreme large aspect ratio was fabricated on the p-GaN capping layer followed by Ag nanoparticles preparation. The coupling distance between the dual-wavelength InGaN/GaN multiple quantum wells and the localized surface plasmon resonance was carefully characterized in nanometer scale by scanning near-field optical microscopy. The effects of coupling distance and excitation power on the enhancement of photoluminescence were investigated. The penetration depth was measured in the range of 39–55 nm depending on the excitation density. At low excitation power density, the maximum enhancement of 103 was achieved at the optimum coupling distance of 25 nm. Time-resolved photoluminescence shows that the recombination life time was shortened from 5.86 to 1.47 ns by the introduction of Ag nanoparticle plasmon resonance.

Cite

CITATION STYLE

APA

Li, Y., Li, A., Zhang, Y., Hu, P., Du, W., Su, X., … Yun, F. (2020). Nanoscale characterization of surface plasmon-coupled photoluminescence enhancement in pseudo micro blue leds using near-field scanning optical microscopy. Nanomaterials, 10(4). https://doi.org/10.3390/nano10040751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free