Abstract
Munc-18/n-Sec1/rbSec1 interacts with syntaxin and this interaction inhibits the association of vesicle-associated membrane protein (VAMP)/synaptobrevin and synaptosomal-associated protein of 25 kDa (SNAP-25) with syntaxin. Syntaxin, VAMP, and SNAP-25 serve as soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptors essential for docking and/or fusion of synaptic vesicles with the presynaptic plasma membrane. Genetic analyses in yeast, Caenorhabditis elegans, and Drosophila suggest that Munc-18 is essential for vesicle transport. On the other hand, protein kinase C (PKC) stimulates Ca21-dependent exocytosis in various types of secretory cells. However, the modes of action of Munc-18 and PKC in vesicle transport have not been clarified. Here, we show that recombinant Munc-18 is phosphorylated by conventional PKC in a Ca21- and phospholipid-dependent manner in a cell-free system. About 1 mol of phosphate is maximally incorporated into 1 mol of Munc-18. The major phosphorylation sites are Ser306 and Ser313. The Munc-18 complexed with syntaxin is not phosphorylated. The PKC-catalyzed phosphorylation of Munc-18 inhibits its interaction with syntaxin. These results suggest that the PKC-catalyzed phosphorylation of Munc-18
Cite
CITATION STYLE
Fujita, Y., Sasaki, T., Fukui, K., Kotani, H., Kimura, T., Hata, Y., … Takai, Y. (1996). Phosphorylation of Munc-18/n-Sec1/rbSec1 by Protein Kinase C. Journal of Biological Chemistry, 271(13), 7265–7268. https://doi.org/10.1074/jbc.271.13.7265
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.