Abstract
Lamellipodia are sheet-like cell protrusions driven by actin polymerization mainly through Rac1, a GTPase molecular switch. In Fcγ receptor-mediated phagocytosis of IgG-opsonized erythrocytes (IgG-Es), Rac1 activation is required for lamellipodial extension along the surface of IgG-Es. However, the significance of Rac1 deactivation in phagosome formation is poorly understood. Our live-cell imaging and electron microscopy revealed that RAW264 macrophages expressing a constitutively active Rac1 mutant showed defects in phagocytic cup formation, while lamellipodia were formed around IgG-Es. Because activated Rac1 reduced the phosphorylation levels of myosin light chains, failure of the cup formation is probably due to inhibition of actin/myosin II contractility. Reversible photo-manipulation of the Rac1 switch in macrophages fed with IgG-Es could phenocopy two lamellipodial motilities: outward-extension and cup-constriction by Rac1 ON and OFF, respectively. In conjunction with fluorescence resonance energy transfer imaging of Rac1 activity, we provide a novel mechanistic model of phagosome formation spatiotemporally controlled by Rac1 switching within a phagocytic cup.
Author supplied keywords
Cite
CITATION STYLE
Ikeda, Y., Kawai, K., Ikawa, A., Kawamoto, K., Egami, Y., & Araki, N. (2017). Rac1 switching at the right time and location is essential for Fcγ receptor-mediated phagosome formation. Journal of Cell Science, 130(15), 2530–2540. https://doi.org/10.1242/jcs.201749
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.