Abstract
We study travelling wave solutions, u = U(x - ct), of the nonlocal Fisher- KPP equation in one spatial dimension, dimension, (Display equation presented), with D = 1 and c = 1, where = = u is the spatial convolution of the population density, u(x, t), with a continuous, symmetric, strictly positive kernel, =(x), which is decreasing for x > 0 and has a finite derivative as x = 0+, normalized so that = = -= =(x)dx = 1. In addition, we restrict our attention to kernels for which the spatially-uniform steady state u = 1 is stable, so that travelling wave solutions have U = 1 as x - ct → - and U = 0 as x - ct→ for c > 0. We use the formal method of matched asymptotic expansions and numerical methods to solve the travelling wave equation for various kernels, =(x), when c = 1. The most interesting feature of the leading order solution behind the wavefront is a sequence of tall, narrow spikes with O(1) weight, separated by regions where U is exponentially small. The regularity of =(x) at x = 0 is a key factor in determining the number and spacing of the spikes, and the spatial extent of the region where spikes exist.
Cite
CITATION STYLE
Billingham, J. (2020). Slow travelling wave solutions of the nonlocal Fisher-KPP equation. Nonlinearity, 33(5), 2106–2142. https://doi.org/10.1088/1361-6544/ab6f4f
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.