An advanced Bayesian model for the visual tracking of multiple interacting objects

  • del Blanco C
  • Jaureguizar F
  • García N
Citations of this article
Mendeley users who have this article in their library.

This article is free to access.


Visual tracking of multiple objects is a key component of many visual-based systems. While there are reliable algorithms for tracking a single object in constrained scenarios, the object tracking is still a challenge in uncontrolled situations involving multiple interacting objects that have a complex dynamics. In this article, a novel Bayesian model for tracking multiple interacting objects in unrestricted situations is proposed. This is accomplished by means of an advanced object dynamic model that predicts possible interactive behaviors, which in turn depend on the inference of potential events of object occlusion. The proposed tracking model can also handle false and missing detections that are typical from visual object detectors operating in uncontrolled scenarios. On the other hand, a Rao-Blackwellization technique has been used to improve the accuracy of the estimated object trajectories, which is a fundamental aspect in the tracking of multiple objects due to its high dimensionality. Excellent results have been obtained using a publicly available database, proving the efficiency of the proposed approach.




del Blanco, C. R., Jaureguizar, F., & García, N. (2011). An advanced Bayesian model for the visual tracking of multiple interacting objects. EURASIP Journal on Advances in Signal Processing, 2011(1).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free