OBJECTIVE: A genetic risk score (GRS) comprised of single nucleotide polymorphisms (SNPs) and metabolite biomarkers have each been shown, separately, to predict incident type 2 diabetes. We tested whether genetic and metabolite markers provide complementary information for type 2 diabetes prediction and, together, improve the accuracy of prediction models containing clinical traits. RESEARCH DESIGN AND METHODS Diabetes risk wasmodeledwith a 62-SNP GRS, ninemetabolites, and clinical traits. We fit age- and sex-adjusted logistic regression models to test the association of these sources of information, separately and jointly, with incident type 2 diabetes among 1,622 initially nondiabetic participants from the Framingham Offspring Study. The predictive capacity of each model was assessed by area under the curve (AUC). RESULTS: Two hundred and six new diabetes cases were observed during 13.5 years of follow-up. The AUC was greater for the model containing the GRS and metabolite measurements together versus GRS or metabolites alone (0.820 vs. 0.641, P < 0.0001, or 0.820 vs. 0.803, P = 0.01, respectively). Odds ratios for association of GRS or metabolites with type 2 diabetes were not attenuated in the combined model. The AUC was greater for the model containing the GRS, metabolites, and clinical traits versus clinical traits only (0.880 vs. 0.856, P = 0.002). CONCLUSIONS: Metabolite and genetic traits provide complementary information to each other for the prediction of future type 2 diabetes. These novel markers of diabetes risk modestly improve the predictive accuracy of incident type 2 diabetes based only on traditional clinical risk factors. © 2014 by the American Diabetes Association.
CITATION STYLE
Walford, G. A., Porneala, B. C., Dauriz, M., Vassy, J. L., Cheng, S., Rhee, E. P., … Florez, J. C. (2014). Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care, 37(9), 2508–2514. https://doi.org/10.2337/dc14-0560
Mendeley helps you to discover research relevant for your work.