PPtree: Projection pursuit classification tree

15Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we propose a new classification tree, the projection pursuit classification tree (PPtree). It combines tree structured methods with projection pursuit dimension reduction. This tree is originated from the projection pursuit method for classification. In each node, one of the projection pursuit indices using class information - LDA, Lr or PDA indices - is maximized to find the projection with the most separated group view. On this optimized data projection, the tree splitting criteria are applied to separate the groups. These steps are iterated until the last two classes are separated. The main advantages of this tree is that it effectively uses correlation between variables to find separations, and it has visual representation of the differences between groups in a 1-dimensional space that can be used to interpret results. Also in each node of the tree, the projection coefficients represent the variable importance for the group separation. This information is very helpful to select variables in classification problems.

References Powered by Scopus

Classification and regression trees

8027Citations
N/AReaders
Get full text

Comparison of discrimination methods for the classification of tumors using gene expression data

1992Citations
N/AReaders
Get full text

A Projection Pursuit Algorithm for Exploratory Data Analysis

1267Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Overview and comparative study of dimensionality reduction techniques for high dimensional data

375Citations
N/AReaders
Get full text

SVM–CART for disease classification

14Citations
N/AReaders
Get full text

Projection Pursuit Random Forest for Mineral Prospectivity Mapping

11Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Lee, Y. D., Cook, D., Park, J. W., & Lee, E. K. (2013). PPtree: Projection pursuit classification tree. Electronic Journal of Statistics, 7(1), 1369–1386. https://doi.org/10.1214/13-EJS810

Readers' Seniority

Tooltip

Researcher 9

47%

PhD / Post grad / Masters / Doc 6

32%

Professor / Associate Prof. 4

21%

Readers' Discipline

Tooltip

Computer Science 6

38%

Mathematics 5

31%

Engineering 3

19%

Social Sciences 2

13%

Save time finding and organizing research with Mendeley

Sign up for free