Spaceborne polarimetric SAR interferometry: Performance analysis and mission concepts

77Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR). Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L) operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1) a quantitative assessment of the Pol-InSAR performance, (2) a comparison between different sensor configurations, and (3) an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

Cite

CITATION STYLE

APA

Krieger, G., Papathanassiou, K. P., & Cloude, S. R. (2005). Spaceborne polarimetric SAR interferometry: Performance analysis and mission concepts. Eurasip Journal on Applied Signal Processing, 2005(20), 3272–3292. https://doi.org/10.1155/ASP.2005.3272

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free