Mesoporous carbon fibers with tunable mesoporosity for electrode materials in energy devices

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

To improve the properties of mesoporous carbon (MC), used as a catalyst support within electrodes, MC fibers (MCFs) were successfully synthesized by combining organic–organic self-assembly and electrospinning deposition and optimizing heat treatment conditions. The pore structure was controlled by varying the experimental conditions. Among MCFs, MCF-A, which was made in the most acidic condition, resulted in the largest pore diameter (4–5 nm), and the porous structure and carbonization degree were further optimized by adjusting heat treatment conditions. Then, since the fiber structure is expected to have an advantage when MCFs are applied to devices, MCF-A layers were prepared by spray printing. For the resistance to compression, MCF-A layers showed higher resistance (5.5% change in thickness) than the bulk MC layer (12.8% change in thickness). The through-plane resistance was lower when the fiber structure remained more within the thin layer, for example, +8 mΩ for 450 rpm milled MCF-A and +12 mΩ for 800 rpm milled MCF-A against the gas diffusion layer (GDL) 25BC carbon paper without a carbon layer coating. The additional advantages of MCF-A compared with bulk MC demonstrate that MCF-A has the potential to be used as a catalyst support within electrodes in energy devices.

Author supplied keywords

Cite

CITATION STYLE

APA

Huang, T. W., Nagayama, M., Matsuda, J., Sasaki, K., & Hayashi, A. (2021). Mesoporous carbon fibers with tunable mesoporosity for electrode materials in energy devices. Molecules, 26(3). https://doi.org/10.3390/molecules26030724

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free